Two New Xanthones from Polygala crotalarioides

Shi Ming DENG^{1,2}, You Xing ZHAO¹, Yu Qing LIU¹, Jun ZHOU¹*

¹State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Academia Sinica, Kunming 650204

²College of Science and Engineering, Hainan University, Haikou 570228

Abstract: Two new xanthones, 1, 6, 8-trihydroxy-2, 3-methylenedioxyxanthone 1 and 1, 4-dihydroxy-6, 7-methylenedioxyxanthone 2, were isolated from the roots of *Polygala crotalarioides*. Their structures were elucidated by spectroscopic and chemical methods.

Keyword: Polygala crotalarioides, Polygalaceae, xanthones.

The interest in xanthones has been increased recently as a class of natural products with a broad spectrum of biological activities. The discovery of the antidiabetic activity of some xanthones from Swertiaceae has prompted us to undertake a more broadly search for novel xanthones from the plants of Polygalaceae 1. During our studies, two new xanthones (1) and (2) (Figure 1) were isolated from the roots of *Polygala crotalarioides*. Their structural elucidation was reported in this paper. The phytochmical investigation of this plant has not been performed up to now.

Compound 1 was yellow needles, mp 280-282°C. The EI-MS of 1 gave a molecular ion peak [M]⁺ at m/z 288 and its ¹³C NMR spectrum including DEPT spectral data of compound 1 were indicative of a pentasubstituted xanthone, having one methylenedioxy moiety (δ 103.4, t, -O-CH₂-O-) and three hydroxyl groups. The HREI-MS of compound 1 (m/z 288.0263, calcd. 288.027) gave its molecular formula C₁₄H₈O₇. The IR and UV spectra also showed the characteristic absorption of xanthone. The carbonyl carbon signal in the 13 C NMR spectrum at 6 184.5 ppm indicated a double chelated carbonyl, meaning two hydroxyls attached at position C-1 and C-8². This was accorded with the absence of proton signal in down field of ¹H NMR spectra. The three singlets of aromatic protons (sometimes meta coupling also is singlet peak) showed only meta substituted requiring the presence of 6-substituted hydroxyl. The oxygenation 1, 2, 3, rather than 1, 2, 4 or 1, 3, 4, of the another aromatic ring was deduced by the low value chemical shift (δ 131.2) for C-2 in the ¹³C NMR spectrum ³. Therefore, compound 1 was identified as 1, 6, 8-trihydroxy-2, 3-methylenedioxyxanthone. That is a new natural

Compound 2, amorphous yellow powder, mp 234-236°C; the EI-MS ($[M]^+$ at m/z272) and ¹³C NMR including DEPT spectral data of compound 2 indicated the existence

^{*} E-mail: jzhou@mail.com.cn

of a tetrasubstituted xanthone, including one methylenedioxy moiety (δ 103.1, t, -O-CH₂-O-) and two hydroxyl groups; the HREI-MS of compound **2** (m/z 272.0323, 272.0321) gave its molecular formula C₁₄H₈O₆. The IR and UV spectra also showed the characteristic absorption of xanthone. The signal at δ 181.8 indicated a free hydroxyl group at C-1 or C-8, chelated with the carbonyl group ². The down field singlet at δ 7.97 of H-8 in ¹H NMR spectrum suggested that the position of *ortho* and *meta* of C-8 were substituted, and the di-*ortho* substituted (C-6 and C-7) group must be methylenedioxyl. The *ortho*-coupled AB system at δ 7.43 (d, 1H, J=8.4 Hz, H-3) and δ 7.53 (d, 1H, J=8.4 Hz, H-2), showed another hydroxyl group should be substituted at C-4 position. The absence of the NaOAc-induced shift in the UV spectrum also confirmed above inferences⁴. Hence, the structure of compound **2** was determined as 1,4-dihydroxy-6,7-methylenedioxyxanthone, it is also a new natural product.

Figure 1 structures of compound 1 and 2

Table 1 1 H and 13 C NMR data for compound **1** and **2** (400MHz, C_5D_5N , δppm)

С	1		2	
	δc	δ_{H}	δc	δ_{H}
1	154.5 s		108.7 d	7.97, s
2	131.2 s		155.5 s	
3	159.0 s		157.5 s	
4	89.9 d	6.59, s	89.4 d	6.65, s
4a	153.8 s		155.5 s	
4b	156.0 s		143.4 s	
5	95.1 d	6.62, s	150.8 s	
6	167.8 s		119.3 d	7.43, d, J=8.4 Hz
7	99.8 d	6.68, s	125.3 d	7.53, d, J=8.4 Hz
8	163.4 s		155.5 s	
8a	104.8 s		105.5 s	
9	184.5 s		181.8 s	
9a	102.0 s		121.0 s	
OCH ₂ O	103.4 t	6.12, s	103.1 t	6.11, s

References

- 1. P. Basnet, Plant Med., 1994, 60, 507.
- 2. I. Miura, K. Hostettmann, K. Nakanishi, Nouv. J. Chim., 1978, 2, 653.
- 3. T. R. Pinheiro, V. C. Filho, A. R. S. Santos, *Phytochemistry*, 1998, 48, 725.
- 4. A. A. Lins Mesquita, D. De Barros Correa, O.R. Gottlieb, Anal. Chim. Acta, 1968, 42, 311.

Received 17 May, 2004